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Abstract

Two closely related ophiostomatoid fungi, Knoxdaviesia capensis and K. proteae, inhabit the fruiting structures of
certain Protea species indigenous to southern Africa. Although K. capensis occurs in several Protea hosts, K. proteae is
confined to P. repens. In this study, the genomes of K. capensis CBS139037 and K. proteae CBS140089 are determined. The
genome of K. capensis consists of 35,537,816 bp assembled into 29 scaffolds and 7940 predicted protein-coding genes
of which 6192 (77.98 %) could be functionally classified. K. proteae has a similar genome size of 35,489,142 bp that is
comprised of 133 scaffolds. A total of 8173 protein-coding genes were predicted for K. proteae and 6093 (74.55 %) of
these have functional annotations. The GC-content of both genomes is 52.8 %.
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Introduction
Two lineages of the polyphyletic assemblage known as
ophiostomatoid fungi [1] are associated with the fruiting
structures (infructescences) of serotinous Protea L.
plants [2]. Protea species are a key component of the
fynbos vegetation in the Core Cape Subregion (CCR) of
South Africa [3] and the genus is predominantly en-
countered in South Africa [4, 5]. The Protea-associated
ophiostomatoid fungi are, therefore, believed to be en-
demic to this region, similar to their hosts. This associ-
ation of ophiostomatoid fungi with a keystone plant
genus in a biodiversity hotspot is intriguing [6], as many
ophiostomatoid fungi are notorious pathogens of trees
[7–10], yet the Protea ophiostomatoid species are not
associated with disease symptoms [11].
Ophiostomatoid fungi are characterized by the flask-

shaped morphology of their sexual fruiting structures
and their association with arthropods [1, 12]. The Pro-
tea-associated members of this assemblage are primarily
dispersed by mites that come into contact with fungal
spores in the Protea infructescences [13, 14]. These

mites have limited dispersal ability, but use beetles and
possibly larger vertebrates (such as birds) as vehicles for
long-distance dispersal [15, 16].
The three Knoxdaviesia M.J. Wingf., P.S. van Wyk &

Marasas species associated with Protea have intriguing host
ranges. K. capensis M.J. Wingf. & P.S. van Wyk occurs in at
least eight different Protea hosts, whereas K. proteae M.J.
Wingf., P.S. van Wyk & Marasas and K. wingfieldii (Roets
& Dreyer) Z.W. de Beer & M.J. Wingf. are confined to sin-
gle host species, respectively P. repens L. and P. caffra
Meisn.[17–20]. An investigation of the population biology
of K. proteae, revealed that this fungus has a high level of
intra-specific genetic diversity and that it is extensively dis-
persed within the CCR of South Africa [16, 21]. However,
other than host range and dispersal mechanisms, little is
known about the biology and ecology of Knoxdaviesia in
general [11]. Here we present the description of the first
drafts of the genome sequences of the two CCR species, K.
capensis and K. proteae, as well as their respective
annotations.

Organism information
Classification and features
The one lineage of Protea-associated ophiostomatoid
fungi resides in the Ophiostomataceae (Ophiostomatales,
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Ascomycota), while the second resides in the Gondwa-
namycetaceae (Microascales, Ascomycota) [11, 22]. The
latter group includes three closely related Protea-associ-
ated species in the genus Knoxdaviesia (Fig. 1). This genus
was initially described to accommodate the asexual state
of the first species in the genus, K. proteae [23]. Under the
dual nomenclature system of fungi, the sexual state of this
fungus was described in the same paper as Ceratocystiop-
sis proteae M.J. Wingf., P.S. van Wyk & Marasas [23]. A
new genus, Gondwanamyces G.J. Marais & M.J. Wingf.,
was later described to accommodate the sexual state of
this species and that of another species, Ophiostoma
capense M.J. Wingf. & P.S. van Wyk [24]. The asexual
states of both remained to be treated as species of Knox-
daviesia. Since the abolishment of the dual nomenclature
system of fungi, the oldest genus name takes preference,
irrespective of morph [25, 26]. The name Knoxdaviesia,
therefore, has priority and all species previously treated in
Gondwanamyces were transferred to Knoxdaviesia [27].
In a study determining the genome sequence of any fun-

gus, it is advisable to use a living isolate connected to the
type specimen. However, the ex-type isolate of K. proteae
(CMW738 = CBS486.88) is more than 20 years old and
does not display the characteristic morphological features
of the fungus in culture anymore. No living ex-type isolate
exists for K. capensis. We thus collected fresh isolates of
both species for this study in order to eliminate possible
mutations or degradation that may have occurred though
continual artificial propagation in culture media. The new
isolates (Figs. 1 & 2) were collected from the same

localities and hosts as the holotype specimens: K.
capensis (CMW40890 = CBS139037) from the infruc-
tescences of P. longifolia Andrews in Hermanus, and
K. proteae (CMW40880 = CBS140089) from P. repens
infructescences in Stellenbosch, both locations in the
Western Cape Province of South Africa. General fea-
tures of these isolates are outlined in Table 1.

Genome sequencing information
Genome project history
Considering the lack of ecological information on the
genus Knoxdaviesia and the close relationship these
Microascalean fungi have to important plant pathogens,
two Protea-associated Knoxdaviesia species, believed to
be native to the CCR in South Africa, were selected for
genome sequencing. Both species were sequenced at
Fasteris in Switzerland. The genome projects are listed
in the Genomes OnLine Database [28] and the whole
genome shotgun (WGS) project has been deposited at
DDBJ/EMBL/GenBank (Table 2). Table 2 presents the
project information and its association with the mini-
mum information about a genome sequence version 2.0
compliance [29]. The full MIGS records for K. capensis
and K. proteae are available in Additional file 1: Table S1
and Additional file 2: Table S2, respectively.

Growth conditions and genomic DNA preparation
Both K. capensis and K. proteae were cultured on Malt
Extract Agar (MEA; Merck, Wadeville, South Africa)
overlaid with sterile cellophane sheets (Product no.

Fig. 1 Maximum Likelihood tree illustrating the phylogenetic position of K. capensis and K. proteae in the Gondwanamycetaceae (grey block). The
Protea-associated species are shaded red and the two isolates for which genome sequences were determined are indicated with a box. The sequences of
the Internal Transcribed Spacer (ITS) region (available from GenBank®, accession numbers in brackets following isolate numbers) were aligned in MAFFT 7
[55]. The phylogeny was calculated in MEGA6 [56] using the Tamura-Nei substitution model [57], 1000 bootstrap replicates and Ceratocystis
fimbriata (Ceratocystidaceae) as an outgroup
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Fig. 2 Sexual sporing structures of the two Knoxdaviesia species sequenced in this study. K. capensis (a) and K. proteae (b) were sampled from Protea
longifolia and P. repens flowers, respectively. Scale bars = 1 mm

Table 1 Classification and general features of K. capensis and K. proteae [29]

MIGS ID Property K. capensis Term K. proteae Term Evidence codea

Classification Domain Fungi Domain Fungi TAS [19, 23]

Phylum Ascomycota Phylum Ascomycota TAS [19, 23]

Class Sordariomycetes Class Sordariomycetes TAS [19, 23]

Order Microascales Order Microascales TAS [2]

Family Gondwanamycetaceae Family Gondwanamycetaceae TAS [22]

Genus Knoxdaviesia Genus Knoxdaviesia TAS [27]

Species K. capensis Species K. proteae TAS [27]

Strain: CMW40890 = CBS139037 Strain: CMW40880 = CBS140089

Cell shape septate, smooth-walled hyphae septate, smooth-walled hyphae TAS [19, 23]

Motility Non-motile Non-motile NAS

Sporulation Unsheathed allantoid ascospores Falcate ascospores TAS [19, 23]

Temperature range 15–30 °C 15–30 °C TAS [19, 23]

Optimum temperature 25 °C 25 °C TAS [19, 23]

pH range; Optimum Unknown Unknown

Carbon source Unknown Unknown

MIGS-6 Habitat Seed cones (infructescences) of Protea spp. Seed cones (infructescences) of Protea repens L. TAS [19, 23]

MIGS-6.3 Salinity Unknown Unknown

MIGS-22 Oxygen requirement Aerobic; requirement/tolerance unknown Aerobic; requirement/tolerance unknown

MIGS-15 Biotic relationship Plant-associated Plant-associated TAS [24]

MIGS-14 Pathogenicity None known None known

MIGS-4 Geographic location Hermanus, South Africa Stellenbosch, South Africa

MIGS-5 Sample collection February 2014 January 2014

MIGS-4.1 Latitude -34.4093 -33.9430

MIGS-4.2 Longitude 19.2150 18.8802

MIGS-4.4 Altitude 20 m 140 m
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement (i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from http://www.geneontology.org/GO.evidence.shtml of the Gene Ontology project [58]
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Z377597, Sigma-Aldrich, Steinham, Germany). After
10 days of growth at 25 °C, mycelia was scraped from
the cellophane and DNA was extracted according to
Aylward et al. [30]. Approximately 5 μg DNA from
each species was used to prepare the three Illumina
libraries (Table 2).
RNA was extracted from the K. proteae genome isolate to

use as evidence for gene prediction. After growth on MEA
at 25 °C for approximately 10 days, total RNA was isolated
from the mycelia with the PureLink™ RNA Mini Kit

(Ambion, Austin, TX, USA). Quality control was performed
on the Agilent 2100 Bioanalyzer (Agilent Technologies,
USA) using the RNA 6000 Nano Assay kit (Agilent
Technologies, USA). The mRNA component of the total
RNA was subsequently extracted with the Dynabeads®
mRNA purification kit (Ambion, Austin, TX, USA).

Genome sequencing and assembly
The genomes of K. capensis and K. proteae were sequenced
with the Illumina HiSeq 2500 platform at Fasteris,

Table 2 Project information

MIGS ID Property K. capensis Term K. proteae Term

MIGS 31 Finishing quality High quality draft High quality draft

MIGS-28 Libraries used 2x paired-end (PE) (350 and 550 bp)
and 1x mate-pair (MP) (3 kbp)

2x paired-end (PE) (350 and 550 bp)
and 1x mate-pair (MP) (3 kbp)

MIGS 29 Sequencing platforms Illumina Hiseq 2500 Illumina Hiseq 2500

MIGS 31.2 Fold coverage PE library 1: 91.6 x PE library 1: 142 x

PE library 2: 80 x PE library 2: 79.3 x

MP library: 17 x MP library: 50.2 x

MIGS 30 Assemblers ABySS 1.5.2; SSPACE 3.0 ABySS 1.5.2; SSPACE 3.0

MIGS 32 Gene calling method MAKER 2.31.8 MAKER 2.31.8

Genbank ID LNGK00000000 LNGL00000000

GenBank Date of Release 11th January 2016 11th January 2016

GOLD ID Gp0093999 Gp0110284

BIOPROJECT PRJNA246171 PRJNA275563

MIGS 13 Source Material Identifier CMW40890/CBS139037 CMW40880/CBS 140089

Project relevance Biodiversity, evolution Biodiversity, evolution

Table 3 Genome statistics

Species K. capensis K. proteae

Attribute Value % of Totala Value % of Totala

Genome size (bp) 35,537,816 100.00 35,489,142 100.00

DNA coding (bp) 12,640,368 35.57 12,542,580 35.34

DNA G + C (bp) 18,774,628 52.83 18,745,365 52.82

DNA scaffolds 29 133

Total genes 8107 100.00 8316 100.00

Protein coding genes 7940 97.94 8173 98.28

RNA genesb 167 2.06 143 1.72

Pseudo genes unknown unknown

Genes in internal clusters unknown unknown

Genes with function prediction 6192 77.98 6093 74.55

Genes assigned to KOGs 6059 76.31 6015 73.60

Genes with Pfam domains 5455 68.70 5335 65.28

Genes with signal peptides 354 4.46 335 4.10

Genes with transmembrane helices 1510 19.02 1527 18.68

CRISPR repeats N/A N/A
aThe total is based on either the size of the genome in base pairs or the total number of protein-coding genes in the annotated genome
bBased on tRNA and rRNA genes only
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Switzerland, using two paired-end and one Nextera mate-
pair library (Table 2). More than 60 million paired-end and
8 million mate-pair reads were obtained for each species.
These reads were trimmed in CLC Genomics Workbench
6.5 (CLC bio, Aarhus, Denmark) so that the Phred Q (qual-
ity) score of each base was at least Q20. VelvetOptimiser
(Gladman & Seeman, unpublished), a Perl script used as
part of the Velvet assembler [31, 32], was initially used to
optimize the assembly parameters. Assembly of contigs was
performed in ABySS 1.5.2 [33] using the optimal parame-
ters suggested by VelvetOptimiser as a starting point.
Several assemblies were computed using kmer-values
slightly higher and lower than the kmer-value suggested by
VelvetOptimiser. The assembly with the lowest number of
contigs was used to build scaffolds in SSPACE 3.0 [34],
discarding scaffolds smaller than 1000 bp. Automatic gap
closure was performed in GapFiller 1.10 [35]. The average

genome coverage of each library was estimated using the
Lander-Waterman equation (total sequenced nucleotides/
genome size) (Table 2), which yielded a combined average
coverage for the three libraries of 188.5x (K. capensis) and
271.5x (K. proteae).
The K. capensis genome consists of 29 scaffolds ranging

between 1226 and 5,637,848 bp, whereas the 133 scaffolds
of K. proteae are sized between 1022 and 2,610,973 bp. A
search for the 1438 fungal universal single-copy ortholog
genes with BUSCO 1.1b1 [36] identified 1355 complete
and 67 partial genes in K. capensis and 1366 complete and
57 partial genes in K. proteae. The two genomes are there-
fore estimated to be >98 % complete.
The extracted mRNA of K. proteae was sequenced

using an Ion PI™ Chip on the Ion Proton™ System
(Life Technologies, Carlsbad, CA) at the Central Ana-
lytical Facility (CAF), Stellenbosch University, South

Table 4 Number of genes associated with the 25 general KOG functional categories

Species K. capensis K. proteae

Code Value % of totala Value % of totala Description

J 359 4.52 371 4.54 Translation, ribosomal structure and biogenesis

A 280 3.53 273 3.34 RNA processing and modification

K 475 5.98 484 5.92 Transcription

L 196 2.47 198 2.42 Replication, recombination and repair

B 109 1.37 99 1.21 Chromatin structure and dynamics

D 209 2.63 227 2.78 Cell cycle control, cell division, chromosome partitioning

Y 34 0.43 32 0.39 Nuclear structure

V 32 0.40 32 0.39 Defence mechanisms

T 505 6.36 586 5.95 Signal transduction mechanisms

M 69 0.87 76 0.93 Cell wall/membrane/envelope biogenesis

N 6 0.08 6 0.07 Cell motility

Z 279 3.51 289 3.54 Cytoskeleton

W 10 0.13 12 0.15 Extracellular structures

U 539 6.79 543 6.64 Intracellular trafficking, secretion, and vesicular transport

O 502 6.32 495 6.06 Post-translational modification, protein turnover, chaperones

C 265 3.34 256 3.13 Energy production and conversion

G 202 2.54 202 2.47 Carbohydrate transport and metabolism

E 227 2.86 228 2.79 Amino acid transport and metabolism

F 76 0.96 74 0.91 Nucleotide transport and metabolism

H 87 1.10 85 1.04 Coenzyme transport and metabolism

I 234 2.95 234 2.86 Lipid transport and metabolism

P 144 1.81 151 1.85 Inorganic ion transport and metabolism

Q 139 1.75 137 1.68 Secondary metabolites biosynthesis, transport and catabolism

R 735 9.26 694 8.49 General function prediction only

S 344 4.33 330 4.04 Function unknown

X 2 0.03 1 0.01 Multiple functions

- 1881 23.69 2159 26.41 Not in KOGs
aThe total is based on the total number of protein coding genes in the genome
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Africa. The >49 million raw RNA-Seq reads were
mapped to the K. capensis genome in CLC Genomics
Workbench and assembled with Trinity 2.0.6 [37]
using the genome-guided option.

Genome annotation
Genome annotation was performed with the MAKER
2.31.8 pipeline [38, 39], using custom repeat libraries for
each species constructed with RepeatScout 1.0.5 [40]
and two de novo gene predictors, SNAP 2006-07-28 [41]
and AUGUSTUS 3.0.3 [42]. The assembled K. proteae
RNA-Seq and predicted protein and/or transcript se-
quences from 22 sequenced Sordariomycete species
(Additional file 3: Table S3), including two Microasca-
lean fungi, were provided as additional evidence. AU-
GUSTUS was trained with the assembled K. proteae
RNA-Seq data and subsequently MAKER was used to
annotate the largest scaffold of the K. capensis and the
largest scaffold of the K. proteae assembly, independ-
ently. After manually curating all the gene predictions
on these scaffolds with Apollo 1.11.8 [43], SNAP was
trained with the curated gene predictions of each scaf-
fold and the scaffolds were re-annotated. SNAP was re-
trained for each species individually and subsequently
both genomes were annotated. EuKaryotic Orthologous
Group (KOG) classifications were assigned to the pre-
dicted proteins through the WebMGA [44] portal that
performs reverse-position-specific BLAST [45] searches
on the KOG database [46]. Additional functional annota-
tions were predicted with InterProScan 5.13-52.0 [47, 48],
SignalP 4.1 [49] and TMHMM 2.0 [50].

Genome properties
K. capensis and K. proteae have similar genome sizes at
35.54 and 35.49 Mbp, respectively. It was possible to as-
semble the K. capensis genome into 29 scaffolds larger
than 1000 bp, whereas the number of scaffolds above
this threshold achieved for K. proteae was 133. Both ge-
nomes had a GC content of 52.8 %.
A total of 7940 protein-coding genes were predicted

for K. capensis and 8174 for K. proteae. Additionally 137
and 116 tRNA and 30 and 27 rRNA genes were pre-
dicted for each species, respectively. More than 74 % of
the protein-coding genes of each species could be
assigned to a putative function via the KOG and Pfam
databases. The content of the two genomes are summa-
rized in Tables 3 and 4.

Conclusions
At least six Microascalean fungi currently have publically
accessible genomes [51–54]. K. capensis and K. proteae,
however, represent the first sequenced genomes from
the Microascalean family Gondwanamycetaceae. The ge-
nomes of these two species will not only enable further

understanding of the unique ecology of Protea-inhabit-
ing fungi, but will also be valuable in taxonomic and
evolutionary studies.

Additional files

Additional file 1: Table S1. Associated MIGS record for K. capensis.
(DOC 75 kb)

Additional file 2: Table S2. Associated MIGS record for K. proteae.
(DOC 73 kb)

Additional file 3: Table S3. Sequenced Sordariomycete fungi used as
evidence for genome annotations. (XLSX 12 kb)
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